设该比例为p,假定学生随机分布于各宿舍中,宿舍为四人间.
某个宿舍有人的概率为1-(1-p)^4.
对每幢有M间的宿舍楼,观察亮灯房间数N次,则每次观察得到的样本X_i服从二项分布B(M, 1-(1-p)^4),
似然函数为 L(p)=L(X_1, ..., X_N; p)= (\prod_{i=1}^{N} \tbinom{M}{X_i} ) (1-(1-p)^4) ^{\sum_{i=1}^{N} X_i} (1-p)^{4(NM-\sum_{i=1}^{N} X_i)}
\ln L(p) = \sum_{i=1}^{N} \ln \tbinom{M}{X_i} + \sum_{i=1}^{N} X_i \ln (1-(1-p)^4) + 4(NM-\sum_{i=1}^{N} X_i) \ln (1-p)
令 \frac{\partial \ln L(p)}{\partial p} = \sum_{i=1}^{N} X_i \frac{4(1-p)^3}{1-(1-p)^4} - 4(NM-\sum_{i=1}^{N} X_i) \frac{1}{1-p} = 0
解得p的极大似然估计 \hat{p}=1-(1-\frac{\sum_{i=1}^{N} X_i}{NM})^{\frac{1}{4}}